Effect of Particle Format and Nb2O5 Addition in Partially Stabilized Zirconia with Y2O3

Catia Fredericci

Resumo

Zirconia (ZrO2)has several applications in diverse industrial segments due to its excellent properties, especially regarding resistance to mechanical stress and high-temperature scenarios. However, due to phase transformations that this ceramic material exhibits at various temperatures, the appearance of cracks in the sintered compact during cooling is perceived. Studies have been performed in the way to stabilize zirconia during the sintering process by adding small quantities of other oxides, such as Y2O3, CeO, MgO and Nb2O5. Some studies show that the use of Nb2O5 in the system ZrO2-Y2O3 promotes an increase in its fracture toughness. Additionally, there are several controversies about the effect of the content and the polymorph of Nb2O5 on zirconia stabilization. There are several commercial zirconia powders partially stabilized in the form of granules obtained by the spray dryer method which promotes better densification of the green and sintered compacts. This study aims at evaluating the effect of adding 0.8 % and 2.0 % (by weight) of monoclinic Nb2O5 in 3Y-TZ-E (Tosoh) on the stabilization of this zirconia and the grinding effect of 3Y-TZ-E granules on the densification and on the sintered compact microstructure. Sintered compacts were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. The results indicate that the use of 2.0 % (in weight) of Nb2O5 implies in the destabilization of tetragonal zirconia and in the formation of Zr6Nb2O17. No significant difference was observed in the densification and in the grain size of the unground TZ-3Y-E with the addition of 0.8 % (in weight) of monoclinic Nb2O5.

Texto completo:

PDF (English)

Número de visualizações: 17

Referências

BEJUGAMA, S.; PANDEY, A.K. Effect of Nb2O5 on sintering and mechanical properties of ceria stabilized zirconia. Journal of Alloys and Compounds, v. 765, 1049-1054, 2018.

BRITO, F. I. G.; MEDEIROS, K.F.; LOURENÇO, J.M. Um estudo teórico sobre a sinterização na metalurgia do pó. Holos, v. 3, p. 204-211, 2007.

CALLISTER, W.D. Ciência e Engenharia de Materiais – Uma Introdução – LTC Editora – 9ª. ed., 2016.

CHEN, I.W.; WANG, X.H. Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, v. 404, p. 168–171, 2000.

GOLIESKARDI M.; SATGUNAM, M.; RAGURAJAN, D. The influence of niobium pentoxide (Nb2O5) on the sintering behavior of yttria tetragonal zirconia polycrystal using two-step sintering (TSS) Method. Australian Journal of Basic and Applied Sciences, v. 8, n. 15, p. 59-63, 2014.

GUHA, J.P. Studies on niobium oxides and polymorphism of niobium pentoxide. Transactions of the Indian Ceramic Society, v. 28, n. 4, p. 97-101, 1969.

GUPTA, T. K.; BECHTOLD, J. H.; KUZNICKI, R. C.; CADOFF, L. H.; ROSSING, B. R. Stabilization of tetragonal phase in polycrystalline zirconia. Journal of Materials Science, v. 12, p. 2421-2426, 1977.

GUPTA, T. K.; LANGE, F.F.; BECHTOLD, J.H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. Journal of Materials Science, v. 13, p. 1464-1470, 1978.

HWANG, C.M.J.; CHEN, I.W. Effect of a liquid phase on superplasticity of 2-mol%-Y2O3-stabilized tetragonal zirconia polycrystals. Journal of the American Ceramic Society, v. 73, p. 1626-1632, 1990.

JIN, X.; GAO, L.; KAN, Y.M. Effects of Nb2O5 on the stability of t-ZrO2 and mechanical properties of ZTM. Materials Letters, 52, p. 10-13, 2002.

KIM, D.J. Effect of Ta2O5, Nb2O5, and HfO2 alloying on the transformability of Y2O3-stabilized tetragonal ZrO2. Journal of the American Ceramic Society, v. 73, 1, p. 115-120, 1990.

KIM, D.J.; JUNG, H.J.; JANG, J.W.; Lee H.L. Fracture toughness, ionic conductivity, and low-temperature phase stability of tetragonal zirconia codoped with yttria and niobium oxide – Journal of the American Ceramic Society, v. 81, n. 9, p. 2309–2314, 1998.

KIMURA, N., ABE, S.; MORISHITA, J.; OKAMURA, H. Low temperature sintering of Y-TZP and Y-TZP-Al2O3 composites with transitional metal oxide additives, in: S. Somiya (Ed), Sintering 88’, Elsevier Applied Science, p. 1142-1148, 1988.

LOPES, O.F.; MENDONÇA, V.R.; SILVA, F.B.F.; PARIS, E.C.; RIBEIRO, C. - Óxidos de nióbio: uma visão sobre a síntese do Nb2O5 e sua aplicação em fotocatálise heterogênea - Química Nova, v. 38, n. 1, p. 106-117, 2015.

LOPES, R. J. Efeitos da temperatura de sinterização nas propriedades mecânicas e na resistência ao envelhecimento de cerâmicas de zircônia (3Y-TZP) para aplicações dentárias – Dissertação de Mestrado – Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT- Processos Industriais, 2009, 78 p.

PIRALEK, B.; PELCZARSKA, A.J.; SZCZYGIEL, I. Characterization of niobium (V) oxide received from different sources. Journal of Thermal Analysis and Calorimetry, 130, p.77-83, 2017.

RAI, K.A.; SINGH, R.P.; SINGH, S.; JAISWAL, A.; OMAR, S. Phase stability and ionic conductivity of cubic xNb2O5-(11-x)Sc2O3-ZrO2 (0  x  4) - Journal of Alloys and Compounds, 703, p. 643-651, 2017.

RAMESH, S.; GILL, C. Environmental degradation of CuO-doped Y-TZP ceramics. Ceramics International, v. 27, n. 6, p. 705-711, 2001.

RAN, S.; WINNUBST, A.J.A.; KOSTER, H.; DE VEEN, P.J.; BLANK, D.H.A. Sintering behaviour and microstructure of 3Y-TZP+8% CuO nano-powder composite. Journal of European Ceramic Society, v. 27, 2-3, p.683-687, 2007.

RODDATIS, V.V.; SU, D.S.; BECKMANN, E.; JENTOFT, F.C.; BRAUN, U.; KRÖHNERT, J.; SCHLÖGL, R. The structure of thin zirconia films obtained by self-assembled monolayer mediated deposition: TEM and HREM study. Surface and Coatings Technology, v. 151-152, p. 63-66, 2002.

SANTANA. L.P.; LAZAR, D.R.R.; YOSHITO. W. K; USSUI. V.; PASCHOAL. J.O.A. Spray-dried YSZ ceramic powders: Influence of slurry stability on physical characteristics of agglomerates. Materials Science Forum, v. 591-593, p. 465-470, 2008.

YOSHIMURA, H.N.; MOLISANI, A.L.; NARITA, N.E; GONÇALVES, M.P.; de CAMPOS, M.F. Zircônia parcialmente estabilizada de baixo custo produzida por meio de mistura de pós com aditivos do sistema MgO-Y2O3-CaO – Cerâmica, v. 53, p. 16-132, 2007.

Apontamentos

  • Não há apontamentos.